Distribution Variance : Our Weapon Against the Casinos
I n our article about house advantage, we learned how the casino gets its edge over the player by paying us casino odds instead of true odds. You think, “Why would anyone play and fight a losing battle if the casino has an edge that’s going to make them lose?”
Lucky Red Casino
✔️A great online casino for real money accepting USA Players with 400% Bonus.
Most people don’t understand their mathematical disadvantage, or don’t even know the house has an advantage. They’re the clueless saps who drop $200 on the table, lose it in an hour, and the walk away wondering why they’re so unlucky.
Some people are so desperate to make easy money that they get suckered into believing that wacky betting systems and silly dice-rolling techniques (i.e., “dice control”) can actually alter the house advantage either by reducing it or by turning it into a player advantage. Instead of asking why you should play a game that’s stacked against you, the real question you should ask is if the game will allow you to win or at least break even during your occasional Vegas vacation?
Tip
By visiting CrapsPit, I hope you learn how to play craps, by studying the Craps Rules before you venture off to Play Craps Online. Here we also offer a free craps game, great to practice placing bets.The key, and the only weapon against the casino, is the phenomenon called “distribution variance.” Don’t worry, you don’t need a PhD in statistics to comprehend it. Variance measures how spread out a bunch of data is. Let’s look at an example, a coin flip, to make it easy to understand.
Before continuing, let’s see if we can figure out the house advantage for this example. If you need to review our other article about calculating house advantage, then do it now.
For 10,000 flips and a $1 bet for each flip, out total bet investment is $10,000 (i.e., 10,000 flips x $1 bet each flip = $10,000). As shown above, after 10,000 flips, if we lose $5,000 and win $4,800, our net loss is $200. Dividing our net loss of $200 by our total investment of $10,000, we see that the house advantage for this example is 2% (i.e., $200 / $10,000 = 0.02). See how easy it is to calculate the house advantage? Now, let’s get back to variance.
Remember our 10,000 coin flips? Let’s take a small sample of the 10,000 and look at just 30 of those flips. Remember, we’re betting on heads every flip. Now, because we’re dealing with a much smaller sample size (i.e., 30 instead of 10,000), the chances are much greater that we’ll see the outcomes be more skewed to heads or tails. For example, how many times have you flipped a coin 10 times and seen either heads or tails come up, say, 7 or 8 times instead of the 5 times that we expect? Because we’re dealing with a much smaller sample size, there’s a much greater chance that the results can get out of whack; however, the results eventually even out as the sample size gets bigger. When the results are out of whack (e.g., for 10 flips, when 8 heads appear instead of the 5 that we expect), that’s the distribution variance at work (i.e., the results vary from what we expect). As noted, over a long period of time, the distribution variance is negligible because everything evens out after a long period of time or when the sample size is big, such as 10,000 flips. But for a small sample size, the variance can be very large. It is distribution variance that produces the familiar hot and cold streaks that we commonly experience at a craps table. The casino doesn’t care about the short-lived hot and cold streaks because the casino knows they occur only during short periods of time, and eventually the distribution approaches equilibrium and evens out. That’s the key for the casino; over time with hundreds of people playing day after day, month after month is when the casino achieves its massive profits. Let’s get back our example of the coin flips.
Our small sample size of only 30 flips might show their outcomes as, for example, 25 heads and 5 tails. Remember, variance measures how spread out a bunch of data is. The 25 heads and 5 tails illustrate that the data spread can be greatly skewed over a relatively small sample size (i.e., in this case the small sample size is only 30 flips out of 10,000). What this means to us at the craps table is that during a small sample size of time (e.g., one hour over three days), the variance can take a turn and produce a wicked hot streak where we defeat the casino and need a wheelbarrow to carry our chips away. Going back to the coin flip, when heads shows those 25 times we win $24 (25 flips multiplied by $0.96 equal $24). When tails shows those 5 times, we lose $5. Our net overall win for those 30 flips is $19. This brief disruption in the variance gives us a temporary chance to clobber the casino. That, and only that, is how we beat the casino at craps. No silly betting system, no wacky con-job known as “dice control,” none of that nonsense. It’s when the distribution results get temporarily out of whack in our favor that allows us to have a net gain instead of a loss.
Although you’ll likely have a net loss if you play long enough, you can expect to win big occasionally because of distribution variance. Let’s say you go to Las Vegas for three short days. Suppose you plan to play four short one-hour periods each of the three days, which totals 12 hours of craps time. It’s entirely possible that you could experience one of those disruptions in the variance that causes the temporary results to swing in your favor. As a result, you’re a big winner for that short trip. Now, in contrast, suppose you’re a local who likes to play four hours after work each day, day after day, week after week, and month after month. In this case, the sample size of time is very large, which means the distribution variance has a chance to even out. So, whatever winning hot streaks you experience over that long period of time will be cancelled out by all the losing cold streaks that you experience. Your winning times and losing times will even out over a long period time. But, in this case, with the built-in house advantage where the casino doesn’t pay their fair share to you when you win (i.e., they pay “casino” odds, not true odds), you’ll likely end up a loser after a long period of time.
You, as a casual occasional player, truly can win if you’re lucky and experience the disruptions in the distribution variance. But if you’re hooked and play frequently, your chances of winning are severely hurt. To be successful, you must have the discipline to limit your play. Don’t play eight hours a day every day. Instead, make a date with your spouse or better half to play together at your favorite online casino maybe once every two or three weeks for a couple of hours. Although the casino has a built-in advantage even in a perfect distribution, in the relatively short time you play (i.e., a small sample size), you might hit a variance in the distribution, an anomaly, where the odds seem to take a vacation and favor you instead of the casino. When that time comes, everything you do is right. The air is pure, the sun is shining, there’s peace on Earth, and your bankroll skyrockets.
So, how do we apply this wonderful phenomenon called “distribution variance” to our game of craps so we can beat the casino? That, my friend, is the subject of more articles. You’re doing a great job! Keep reading our articles and keep learning. The more you read and learn, the better–and more successful–player you’ll be.
You can now head over to the table of contents to find more great content. Practice at Sun Palace, Casino Max, or Slots Plus to later play craps for real money. Here you will learn how to play craps, find the best craps strategy and also how to win at craps